

Eine Glasfaser als Sensorelement: Entwicklung eines faseroptischen Zweiachs-Neigungssensors

Klaus MACHEINER

Neigungsmessung: Anwendungen und Herausforderungen

Monitoring

• Bauwerke

Instrumente

- Totalstationen
- Laserscanner
- Lasertracker
- Bohrlochinklinometer

- Maschinensteuerung
 - Baumaschinen
 - TBM
 - ...

Herausforderungen

- Kinematischer Betrieb
 - dynamisches Verhalten
 - Ansprechzeit
 - Störeinflüsse
- Neigungswinkel (Genauigkeit) unter jeglichen Bedingungen

Faseroptischer Neigungsmesser (FO-NM)

Spezifikationen

- Arbeitsbereich:
- Präzision (kin.):

Messprinzip

- Sensorelement
 - einseitig eingespannte Glasfaser
 - freies Ende: Auslenkungen d bei Neigung
 - Masse am freien Ende ($d \rightarrow >>$)
 - Licht in der Faser
 - Lichtpunkt (2D Position) am Detektor
- Positionsdetektor
 - PSD (2D)

- Größe: 8 x 8 mm² $\rightarrow \sigma_d \approx 1 \ \mu m \ für \ 0.01^\circ$

Vorteile

- einfaches Prinzip
- kein Gelenk für Pendel erforderlich
- Neigungsmessung in 2 Achsen

Versuchsmuster: Hardware

Bewegungsgleichung

- Sensorelement
 - Balken (Biegesteifigkeit EI, Balkenmasse m_b , Punktmasse m_p)
 - eine Achsrichtung: Auslenkung u(x,t)
- Biegeschwingung: Partielle Differentialgleichung

• Lösung aus Elastostatik bekannt

• Charakteristische Gleichung für κl (Rand-, Anfangsbedingungen)

$$\frac{1 + \cosh \kappa l \cos \kappa l}{\text{Balken}} + \varepsilon \kappa l (\sinh \kappa l \cos \kappa l - \cosh \kappa l \sin \kappa l) = 0 \qquad \varepsilon$$

 m_p

 m_{h}

Sensorelement: Modellierung (2)

Eigenschwingungsformen

- Form der Balkenschwingung $U_k(x)$
- Auslenkungsbeiträge u_k der Moden

Eigenfrequenzen

$$w_k = {\kappa_k}^2 \sqrt{\frac{EI}{\rho A}}$$

- Simulationsergebnisse
 - Einschränkung: PSD (u_{max} = 4 mm)
 - *l* = 30 mm, *m*_p = 80 mg
 - *f*₁ = 6.4 Hz
 - *u*₁ = 3.248 mm
 - Moden k > 1 vernachlässigbar ($m_p > m_b$) $u_{2..n} < 0.01\%$ $f_{2.n} > 400$ Hz
- Erweiterung auf 2D
 - Auslenkungen u(t), v(t)
 - Positionsmessung mit PSD

Versuchsmuster: Kalibrierung

Positionskalibrierung

- Einrichtung
 - Referenzpositionen (1 µm)
 - PSD Positionen (Nichtlinearität)
- Ergebnisse
 - Residuen < $1 2 \mu m$

Neigungskalibrierung

- Einrichtung
 - Referenzneigungen (0.001°)
 - Faserauslenkungen d (in Richtung α)
- Ergebnisse
 - Residuen < 0.01°

Signalverarbeitungsschritte

Filterung

- Unterdrückung der Biegeschwingung: f = 6.4 Hz
- Anwendungstyp "standard"

 f_c :
 1.0 Hz

 $f_c + \Delta f$:
 5.0 Hz

 δ_1 :
 0.002 dB

 $1 - \delta_2$:
 -60 dB

• Chebyshev II Filter, *N* = 5, kurze Ansprechzeit

Experimentelle Ergebnisse

Quasi-statisches Experiment

- wiederholte Neigungsänderungen
- Inkremente: 2.5°, Ruhezeit: 1 min

Ergebnisse

- systematische Effekte
- Wiederholbarkeit: < 0.02°
- Hysteresekompensation: STD < 0.02°

- Kinematisches Experiment
 - schnelle Neigungsänderung ($\Delta\beta_1$): 0.5 s

Ergebnisse

- Ansprechzeit:
- Überschwingen:
- Abklingzeit:
- Komponente β_2 :

 $t_R = 0.25 \text{ s}^{*)}$ 0.62° (6.2 % $\Delta\beta_1$) t_D (< 0.05°): 0.9 s

Erweitertes Konzept: 2. Sensorelement

Ziel

- Eignung für höhere Kinematik
- Vorteile aus 2 Fasern
 - "genauer aber langsamer" vs.
 - "weniger genau aber schneller"

Design (Variante)

- Faser 1 (wie bisher)
 - $l = 30 \text{ mm}, m_p = 80 \text{ mg}$
 - *f* = 6.4 Hz
 - $t_R = 0.25 \text{ s}$
- Faser 2 (zusätzlich)
 - $l = 19 \text{ mm}, m_p = 80 \text{ mg}$
 - *f* = 12.8 Hz
 - $t_R = 0.13 \text{ s}$

- Datenfusion: Kalman-Filter
 - Analyse der Innovationen
 - Anpassung des Systemrauschens (adaptives Filter)
- Beispiel

Faseroptischer Neigungsmesser

Schlussfolgerungen

- Sensorprinzip geeignet f
 ür Neigungsmessung
- Versuchsmuster geeignet für unterschiedliche Anwendungen
- erreichbare Genauigkeiten
 - STD = 0.015° für gesamten Arbeitsbereich (Hysteresekompensation)
 - Δ < 0.05° bei kinematischen Situationen nach ca. 1 s
- Simulation: zwei Sensorelemente
 - unterschiedliche Designparameter
 - adaptive Filterung
 - realistische Schätzung der Neigungen

- Ausblick: erweitertes Sensorkonzept
 - mehrere verteilte Sensorelemente
 - mögliche Basis für kreiselfreies INS
 - Verwendung von Neigungs- und Beschleunigungsdaten

Eine Glasfaser als Sensorelement: Entwicklung eines faseroptischen Zweiachs-Neigungssensors

Klaus MACHEINER

