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Space geodetic observations

Global Navigation Satellite
Systems (GNSS)

Very Long Baseline
Interferometry (VLBI)

I Space geodetic techniques measure (differences of) travel times from
radio sources like satellites or quasars

I These time measurements can be converted to distance measurements
using the speed of light (299792458 m/s)

I Using these distances, the positions of the receiving antennas can be
calculated

I Sub-cm position accuracy can be achieved , Goal: 1 mm accuracy
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Atmospheric delays

The signals in space geodetic techniques are delayed in the
atmosphere due to:

I Propagation speed lower than speed of light in vacuum

I Bending

Total delay is several metres (depending on elevation angle)
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Effect on estimated station positions

I If not corrected for, the atmospheric delay will cause an error in the
estimated station position

I Error will be mostly in the vertical component, since both the effect of
station height and the atmospheric delay are dependent on the elevation
angle e:

I Height ∝ sin(e)

I Clock ∝ 1

I Atm. delay ∝ mf (e) ≈ 1/ sin(e)

I The magnitude of the error depend on the observation geometry, the
atmospheric delay as function of direction, . . .

I Rules of thumb for the vertical coordinate error:
I Three times the error in the zenith atmospheric delay error
I One fifth of the atmospheric delay error at the lowest elevation

angle [MacMillan and Ma, 1994]
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Handling atmospheric delays in space geodetic
data analysis

There are two ways of handling the atmosphere in space
geodetic data analysis:

1. Use corrections from external sources:
I Models
I Ray-tracing though numerical weather models
I Other instruments, e.g. water vapour radiometers
I Requires high accuracy of corrections (mm level),

difficult to achieve. . .

2. Estimate the atmospheric delay in the data analysis

3. A combination of both ( 1 + 2 )
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Atmospheric layers

I Atmosphere consists of several layers

I In space geodesy the atmosphere is normally divided into:

I Neutral atmosphere
I Ionosphere
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Ionospheric delays
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Example of ionospheric TEC (in TECU,
1016 e−/m2). From a combination of GPS,
altimetry, and COSMIC data, 21/7 2007
9:00 UTC. From M. Alizadeh.

Lif =
1

f 2
1 − f 2

2

[
f 2
1 L(f1)− f 2

2 L(f2)
]

(1)

I Ionosphere: Ions and
free electrons

I Ionospheric delay is
frequency dependent
(Li ∝̃ 1

f 2 ), and
proportional to the
Total Electron
Content (TEC)

I Can be removed
using a combination
of two frequencies
(eq. (1))

I Models for removing
also higher order
effects ( 1

f 3 , . . . )
exists
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Tropospheric delays

I In the neutral atmosphere
the delay is practically
frequency independent

I Must be corrected using
external information, or
estimated in the data
analysis 0 20 40 60 80 100
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The tropospheric delay Lt can be calculated by:

Lt = 10−6
∫

S
N(s) ds (2)

Where the refractivity N is:

N = k1
p

T
+ k ′2

pw

T
+ k3

pw

T 2
(3)

p: total pressure, T : temperature, pw : partial pressure due to water vapour.
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Hydrostatic and wet delays
The tropospheric delay can be divided into a hydrostatic part (Lh)
and a wet part (Lw ) :

Lt =

∫
S

k1
p

T
ds︸ ︷︷ ︸ +

∫
S

[
k ′

2

pw

T
+ k3

pw

T 2

]
ds︸ ︷︷ ︸

Lh Lw

(4)

The hydrostatic delay is proportional to the surface pressure
(hydrostatic equilibrium)

Wet delay cannot be
predicted from surface
meteorological data.
Needs to be estimated in
the data analysis.
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Modelling tropospheric delays in space geodetic
data analysis

Lt = mfh(e) Lz
h + mfw (e) Lz

w + Gradients (5)

mf: Mapping function
Lzh: zenith hydrostatic delay (ZHD,

2.0–2.5 m)
Lzw: zenith wet delay (ZWD, 0–40 cm)
Gradients: model the linear horizontal

variations in the refractivity

Normally ZHD is calculated from
surface pressure measurements, while
ZWD and gradients are estimated in
the data analysis
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Limitations of the models

I Mapping functions need to be
accurately known

I Depends on the current
atmospheric conditions

I It is assumed that the variations in
the refractivity is linear

I Small scale variations due to
atmospheric turbulence cannot be
modelled
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Wet tropospheric
delays (mapped to
zenith) simulated using
a turbulence model
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Error caused by turbulence in geodetic VLBI
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Observed: 1.43
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I Continuous VLBI campaign CONT05
(12-27 September, 2005)

I Simulated VLBI observations
I Tropospheric delays simulated using a turbulence model
I Three different assumptions of the “strength” of

turbulence
I Clock errors and observation noise also simulated

I From Nilsson and Haas [2010]
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Comparison of tropospheric delays
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Comparison of tropospheric delays
estimated using different techniques
during the CONT08 campaign
(12-26 August, 2008); from Teke et al.
[2011].

I VLBI (two solutions: VieVS and
IVS)

I GPS (two solutions: CODE and
IGS)

I DORIS

I Water Vapour Radiometry

I Numerical Weather models:
I ECMWF (global)
I HIRLAM (Europe)
I JMA (KARAT) (Japan)
I CReSS (Japan)
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Comparison of tropospheric delays (II)

RMS differences between VLBI (VieVS) and other techniques
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Applications of tropospheric delays from space
geodesy

I The tropospheric delays estimated by GNSS and VLBI
can be used for atmospheric studies

I The zenith wet delay is related to the integrated water
vapour content (IWV): ZWD≈ 6.5· IWV

I Interest of using ZTD (or ZWD) from space geodesy in:

I Meteorology
I Climatology
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GNSS meteorology
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Radiosonde launch sites in Europe
0–4 launches per day

I Water vapour is a very important
parameter in meteorology

I It is very variable spatially and

temporally
I Requires continuous

monitoring

I Most information about the

vertical water vapour profile

from radiosondes
I Poor spatial and temporal

resolution
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GNSS meteorology (II)

GNSS stations in Europe, used in the
E-GVAP project

I Dense national GNSS networks
exist

I All could be used for estimating
ZTD

I Could be assimilated in
numerical weather prediction
models, when data is provided in
(near) real time

I Projects:
I NOAA GPS-IPW (USA)
I COST716, TOUGH,

E-GVAP (EU)
I GNSSMET-Austria
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GNSS meteorology (III)

I Impact on
precipitation
forecasts when
assimilating GPS
data

I From Vedel and
Huang [2004]

I GNSS data
generally
improves the
weather forecast,
especially in
extreme weather
conditions
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GNSS meteorology (IV)

I Results from GNSS Met
Austria

I IWV from a weather
model (INCA) whitout
(upper) and with (lower)
assimilation of GPS
IWV.

I Karabatić et al. [2011]
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Climate studies

I Water vapour is the most
important greenhouse gas

I Climate models predict that the
average relative humidity is
constant as temperature changes

I Saturation water vapour pressure
increases (approx exponentially)
with temperature

I Absolute humidity increases
as temperature increases

I 1 K temperature increase ⇒ 5–7%
increase in IWV (and ZWD)

I Thus, ZWD from VLBI and GNSS
can be used for studying climate
trends if the time series are long
enough
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Climate trends from VLBI

I Time series of ZWD
from VLBI

I Trends:
I −0.11 mm/yr

(Kokee)
I 0.36 mm/yr

(Onsala)
I 0.51 mm/yr

(Wettzell)

I Trends strongly
dependent on the time
period studied

I From Nilsson et al.
[2011]
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Climate trends from GNSS

I ZWD trends over
Sweden and Finland
estimated from GPS
data 1997–2006.

I From [Nilsson and
Elgered, 2008]
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GNSS tropospheric tomography

I The ZWD gives information only about the integrated
amount of water vapour

I Would be interesting also to get the 3D (4D) structure
of the water vapour content

I Tomography is a method for estimating 3D images from
measurements of integrals along different paths

I Idea: apply tomographic methods to the observed
GNSS slant wet delays (wet delays along the GNSS ray
paths)
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GNSS tropospheric tomography principle

A slant wet delay Ls can be expressed
as:

Ls =
∑

i

Ni Di (6)

Ni : refractivity of voxel i
Di : distance of ray in voxel i

I Atmosphere divided into voxels
(volume pixels)

I Refractivity of a voxel assumed
constant

I The slant wet delays can be
expressed as a linear combination
of the voxel refractivities

I Inverting the obtained equation
system gives the refractivities of
the voxels

I Problems:
I Obtaining the slant wet

delays
I Poor vertical sensitivity

(no rays entering/exiting
on the “sides”)

I Empty voxels
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Simulation results

From Nilsson [2007]

I Performance of GNSS
tomography from simulations

I 16 station network, station
separation 6–7 km

I Refractivity 20 mm/km between
3–4 km, zero elsewhere

I GNSS tomography insensitive to
the height of the refractivity
layer
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Simulation results

From Nilsson [2007]

I Refractivity 20 mm/km only in
middle voxel of the 3–4 km layer,
zero elsewhere

I The refractivity profile is
retrieved accurately

I Demonstrates that GNSS
tomography is sensitive to
horizontal variations in the
refractivity field
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Results using observed data
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I Results from the ECOMPTE
network, Marseille, France

I 18 Station network

I June, 2001

I From Nilsson et al. [2007]
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Results using observed data (II)

Wet refractivity at 676 m ASL. Left: NWP model (COSMO-DE), Right:
Tomography. From Bender et al. [2011]

Vertical cut through the wet refrac-
tivity field at λ =7.52◦E.
Upper plot: COSMO-DE
Lower plot: tomography
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Conclusions

I The atmosphere causes a delay of the signals used in space
geodesy

I Normally the tropospheric delay is estimated in the data
analysis

I Not possible to model small scale fluctuations due to turbulence

I Tropospheric delays estimated by space geodetic techniques
can be used in:

I Meteorology (weather forecast)
I Climatology
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Herzlichen Dank zu:

I Meine Kollegen und Kolleginnen am

I Meine ehemalige Kollegen und Kolleginnen am

I Alle meine Kollegen und Kolleginnen aus der ganzen
Welt
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I

I

I
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