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Abstract

In times of steadily increasing traffic loads and extreme weather phenomena,
the safe maintenance of infrastructure poses a difficult challenge to operators,
especially when a vast number of aged structures exists and fundamental data
is missing. This paper addresses the demand for cost-efficient deformation mon-
itoring of anchored retaining structures along public roads. The principal idea
is to process laser scans of a motor-vehicle-based mobile mapping system with
a high degree of automation. Starting with scene interpretation, our processing
pipeline extracts the retaining wall from the rest of the point cloud, segments
the anchored elements, and computes their deformations. This method requires,
however, correcting for positioning errors to obtain accurate results. We exploit
the high data redundancy of road patches and line markings for alignment. Due
to the high degree of automation, computations scale to large numbers of point
clouds and run in a repeatable manner. Even when traveling along highways with
up to 100 km/h, we achieve repeatable accuracies for tilting and lateral displace-
ments that compare to traditional, labor-intense surveying methods.

(tilting) for retaining walls. The herein used analytical
models assume simple structural systems with primi-

Anchored retaining walls can withstand high lateral pres-
sures despite their slim design. They typically stabilize
deep excavations, cuts, or steep slopes where space limi-
tation is an issue. Therefore, these structures prove espe-
cially suitable for establishing road and railway networks
in mountainous regions. Since retaining walls may expe-
rience extreme loads and environmental influences, it is
of social-economic importance to monitor their structural
stability throughout the operational lifetime. Route avail-
ability and public safety depend on their performance.
Legal standards, such as the Eurocode 7 (E. 1997-1, 2004,
section 9.7), provide numerical serviceability and ultimate
limit state values for settlements and relative rotations

tive geometric shapes and homogenous soil strata (see
Figure 1). Albeit oversimplified, it can provide a rule of
thumb for real-world applications, though. More sophis-
ticated numerical methods are capable of modeling the
structural behavior better, but they typically require very
detailed information on the entire system (construction
and underground). Characteristic parameters of con-
crete structures are reinforcement distribution, concrete
class, and quality. Other methods (e.g., Rebhan, Marte,
Vorwagner, Tschuchnigg, & Kwapisz, 2019) account for
reinforcement corrosion (Figure 1 left), tension stiffening
of concrete, as well as cracking energy when estimating
bearing capacity and deformation response. The loading

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any medium,

provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.
© 2021 The Authors. Computer-Aided Civil and Infrastructure Engineering published by Wiley Periodicals LLC on behalf of Editor

678 wileyonlinelibrary.com/journal/mice

Comput Aided Civ Inf. 2021;36:678-694.


mailto:slaven.kalenjuk@tugraz.at
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://wileyonlinelibrary.com/journal/mice

KALENJUK ET AL.

59 WILEY--2

FIGURE 1

Typical failure mechanisms of anchored structures include anchor failures (center, E. 1997-1, 2004, figure 9.5) as a consequence

of, for example, corroded anchor strands (left) and loss of overall stability (right, E. 1997-1, 2004, figure 9.6)

FIGURE 2

Concept for large-scale deformation monitoring of retaining walls: fast data acquisition with mobile mapping (left), producing

high dense point clouds (right) for efficient and automatic data processing

behavior of the underground is at least equally important
for a precise estimate. The strata, the constitutive model,
and its soil parameters are influencing factors in this con-
text (Sharma, Prabhu, Naveen, & Bhuvaneshwari, 2020).

Despite the remarkable progress, practitioners rarely
profit from these models, as fundamental data are missing
for most existing structures. Moreover, because of limita-
tions in personnel and financial resources, only a fraction
of infrastructure objects undergoes ongoing monitoring
schemes with reasonably high measurement frequency.

In other words, infrastructure operators mostly know lit-
tle about (a) the nominal and (b) the actual deformation
behavior of their objects. This paper addresses the latter
problem in particular. The motivation is that observations
at regular intervals can help to identify abnormal struc-
tural behavior.

Established measurement methods such as optical sur-
veys and permanently installed sensors are infeasible for
this purpose because of their time and cost inefficiency.
We hence propose a novel tilt monitoring concept using
mobile laser scanning (MLS). The principle idea is that
a mobile mapping system (MMS) scans retaining walls
while passing by with up to 100 km/h (60 mp/h), that is,
without constraining road availability (see Figure 2, left).
The efficient data collection allows us to minimize the
data acquisition costs with an increasing number of struc-

tures. Therefore, our approach promises improvements in
structural monitoring at large scale, that is, when a large
amount of structures exist in small space (as, for instance,
in the central European area).

To the best of the authors’ knowledge, the literature
lacks research on processing mobile laser scans for defor-
mation monitoring. Recent studies focus on inventory,
modeling, or inspection of infrastructure objects. The
present paper provides a contribution to

* processing large-scale data of commercially available
MMS,

* for deformation monitoring of anchored structures and
retaining walls,

* by tailored, object-oriented point cloud processing algo-
rithms, which can model deformations of anchored con-
crete panels automatically,

* while accounting for the system’s positioning uncertain-
ties.

The next section gives a review of existing work about
monitoring of retaining structures, static laser scanning-
based deformation monitoring, and recent case studies on
MLS. A detailed description of our method for highly auto-
mated point cloud processing follows in Section 3. We
describe the scope conditions of the extensive case study
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with multiple retaining walls in the Alpine area (Section 4)
and discuss the achieved results (Section 5).

2 | RELATED WORK

2.1 | Monitoring of retaining structures
Maintaining retaining structures requires experts to
inspect their stability and general condition. Elementary,
but essential measures are visual inspections that take
place at regular intervals. The aim is to identify and report
deficiencies as well as to track their evolution. In case
that problems or changes in behavior become evident,
installing additional sensors helps to trace and understand
the structural performance (deflections, pressures) from
that point on in more detail.

For this purpose, various published use cases show that
monitoring schemes typically amount to the same selec-
tion of sensor types. Yoo and Lee (2003) used total sta-
tions, inclinometers, earth pressure cells, and strain gauges
along anchor rods during the construction of an anchored
segmental retaining wall. This comprehensive monitor-
ing program contributed to the fundamental understand-
ing of the mechanical behavior of such object types. Reb-
han, Marte, Tschuchnigg, Vorwagner, and Kwapisz (2019)
apply strain and tilt sensors on the front face of a cantilever
wall model while artificially inducing corrosion of the
reinforcement at different load levels. It is their ultimate
goal to quantify the extent of the corrosion, based on sen-
sor data. Admassu, Lynch, Athanasopoulos-Zekkos, and
Zekkos (2019) report on the installations of unattended,
low-cost systems, with inclinometers, strain gauges, and
thermometers to two existing reinforced concrete walls
on highways that showed significant distress at preced-
ing inspections.

While researchers seek for continuous and frequent data
collection, recurring conventional wall surveys with total
stations are sufficient and still more feasible. The reason
is that reinforced concrete retaining walls tend to behave
ductile, thus allowing large deformations before reach-
ing a critical state. However, the problem of using sur-
veying techniques and permanently installed sensors on
a wall is that, although accurate, information is available
only in single points/profiles and at a high cost. On that
account, unsurprisingly, imaging systems provide cheap
alternatives for full-field analysis. Tung, Weng, and Shih
(2013) use a standard camera with a fixed setup to repeat-
edly capture images of a retaining wall and to perform
digital image correlation. This method is sensitive to in-
plane deformations only and comprises the challenge of
setup stability for pure imaging systems (Ehrhart, 2017).
Standard photogrammetry proves adequate neither, since
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3D reconstructions do not yield the desired accuracy for
deformation monitoring (Oats, Escobar-Wolf, & Oommen,
2017), except when observing visual markers (S. Park, Park,
Kim, & Adeli, 2015). In contrast, laser scanning established
itself as a precise alternative for full-field data acquisi-
tion. Back in 2008, Laefer and Lennon (2008) concluded
that this technology was not ready for their task of auto-
mated monitoring of sheet pile walls. The main reasons
were the high equipment costs and the lack of software
tools for change detection in point clouds. Powered by the
rapidly growing market, applications of laser scanning for
civil engineering increased in the past years with cheaper
hardware options and smarter software solutions. Among
other fields, research in civil engineering capitalizes on
these recent developments. Oskouie, Becerik-Gerber, and
Soibelman (2016) show promising results of a field study
where they target settlements of a mechanically stabilized
earth (MSE) wall with laser scanning. Their concept for
data processing is to extract horizontal joints between the
concrete panels and to compare their height component
with data of subsequent epochs. By contrast, McGuire,
Yust, and Collin (2016) obtain vertical profiles from point
clouds of full-scale structures, from which they compute
vertical and lateral displacements. Another recent field
study focuses on the out-of-plane offsets between adjacent
concrete facing panels of a scanned MSE wall (Lin, Habib,
Bullock, & Prezzi, 2019). These investigations reveal the
potential of terrestrial laser scanning when using appro-
priate hardware and tailored processing strategies. Results
differ from manual measurements less than 1-2 mm at
spot checks.

2.2 | Processing strategies for laser
scanning-based deformation monitoring

Laser scanning is a promising technology for deformation
monitoring that can produce remarkable results. Its accu-
racy depends on a variety of influencing factors though.
Regarding laser distance measurements, these subdivide
into three main categories of influences, all of which are
subject to current research (Lienhart, 2017; Blaskow &
Schneider, 2014). These include impacts of

1. instrument hardware and setup stability,
2. measurement path, and
3. interaction of laser beam with target.

Accordingly, obtaining maximum accuracy requires
considerations about (a) instrument calibration (Holst,
Neuner, Wieser, Wunderlich, & Kuhlmann, 2016) and
reliable registration (Cheng et al., 2018; Friedli & Wieser,
2016), (b) refractivity and atmospheric corrections
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(Friedli, Presl, & Wieser, 2019), as well as (c) the noise
level as a function of surface characteristics and inci-
dence angles (Soudarissanane, Lindenbergh, Menenti, &
Teunissen, 2011; Wujanz, Burger, Mettenleiter, & Neitzel,
2017).

Apart from these aspects, the question remains of how
to quantify deformations from multiple point clouds in
general. Compared to traditional surveys of optical tar-
gets, laser scanners capture surrounding objects fast and
autonomously, with no guarantee of sampling the same
spot multiple times. Obviously, the challenge is to find
corresponding points in both point clouds to compare
their coordinates (X, Y, Z). Standard software packages
for point cloud processing (e.g., CloudCompare) include
algorithms that search for nearest neighbors (Girardeau-
Montaut, Roux, Marc, & Thibault, 2005) or points with
the least orthogonal distance w.r.t. the underlying surface
(Lague, Brodu, & Leroux, 2013). These methods work well
for most cases but prove prone to varying point densi-
ties, registration errors, and in-plane movements (Holst,
Schmitz, Schraven, & Kuhlmann, 2017). Finding the cor-
rect, corresponding points is the key here, similar to
tasks of point cloud registration, object reconstruction,
and tracking. Research on these topics produced vari-
ous algorithms that compute hand-crafted geometric fea-
tures for two point clouds and find the nearest neigh-
bor in feature space (Guo et al., 2016). Today, state-of-the-
art descriptors rely on training deep networks with freely
available data sets that outperform hand-crafted ones in
terms of accuracy (Choy, Park, & Koltun, 2019). This fact
is especially beneficial for deriving deformations of irreg-
ular objects, such as landslides (Gojcic, Zhou, & Wieser,
2019).

However, most artificial structures consist of regu-
lar shapes, providing less distinctive points in the laser
scans. Gordon and Lichti (2007) exploit just this smooth-
ness property by modeling point clouds of timber beams.
Through the high data redundancy, they achieve a pre-
cision of beam deflection that is up to 20 times better
than the instrument’s single-point precision. This con-
cept applies to objects of diverse shapes, ranging from
arch dams (Eling, 2009), bridges (H. S. Park, Lee, Adeli,
& Lee, 2007), tall chimneys (Kregar, Ambrozi¢, Kogoj,
Vezotnik, & Marjeti¢, 2015), radio telescopes (Holst et al.,
2015), and igloos (Serantoni & Wieser, 2016) to other spe-
cial constructions with free-form surfaces (Schmitt et al.,
2017).

Mukupa, Roberts, Hancock, and Al-Manasir (2017) and
Vosselman and Maas (2010) review various field studies
and highlight the variety of tailored, problem-specific solu-
tions to processing static, terrestrial laser scans for defor-
mation monitoring.
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2.3 | Mobile laser scanning in civil
engineering

While static laser scanning established itself in engineer-
ing applications, the commercialization of MLS systems
is underway (Tapken, 2018). It is their ability to collect
extensive data of road environments that makes MLS
an appealing technology for infrastructure modeling and
inventory (Jaakkola, Hyyppd, Hyyppd, & Kukko, 2008;
Ma et al., 2018) as well as for generating accurate maps
for autonomous driving (Javanmardi, Javanmardi, Gu, &
Kamijo, 2018; Ladstéddter, Luley, Ladstitter, & Mayer, 2019).
Improvements in profile scanners and positioning sen-
sors push the quality of MLS data further. Albeit origi-
nally introduced for mapping, state-of-the-art systems pro-
vide useful data for as-is state analysis of road infrastruc-
ture. Especially road surface inspections on, for example,
ruts, cracks, and potholes gained attention in research
(Heinz, Eling, Klingbeil, & Kuhlmann, 2019) and indus-
try (Saarenketo & Silvast, 2019). The reason is that reliable
information about the location and the extent of existing
deficiencies allows competent operators to perform tai-
lored rehabilitation measures without constraining road
availability during an inspection. MLS produces large
amounts of data within a short time, making manual iden-
tification of regions of interest unfeasible with increasing
project size. Automated pattern recognition algorithms are
therefore in high demand for processing laser scans of road
surfaces (Sesselmann, Stricker, & Eisenbach, 2019) and, for
instance, of tunnel linings (Schneider, Prokopova, Mod-
etta, & Petschen, 2019).

With a focus on defect detection and clearance measure-
ments (Mikrut et al., 2016), MLS found its way to civil engi-
neering tasks. Up to date, few works exist on deformation
monitoring using MLS data, though. This is mainly due
to missing algorithms that derive deformations (see Sec-
tion 2.2) and handle registration errors of MLS point clouds
in a scalable, efficient, and automatic manner.

3 | METHODOLOGY

This section describes such algorithms that take a point
cloud P (Figure 4, left) from an MMS and compute defor-
mations for retaining walls. It assumes P to sample road
sections with the object of interest and its surroundings.
The methodology exploits the fact that most commercial
MLS systems enable data partitioning during acquisition.
This feature reduces the processing time of trajectories
and georeferenced point clouds. Uncropped laser scans of
large-road networks would require an additional action
before proceeding with the proposed processing pipeline.
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It is depicted in Figure 3 and consists of five computational
steps:

1. Removing ground points implies the positive effect
of accelerating all subsequent computations. More-
over, the separated ground cloud Py allows road-
specific analyses.

2. Abinary classification follows that extracts the retaining
wall from the remaining point cloud and thus removes
vegetation, cars, street signs, etc.

3. As reviewed in Section 2.2, modeling point clouds
of regularly shaped objects and their deformations is
preferable to computing point-to-point deviations. The
idea is hence to segment anchored concrete panels and
model them individually with planar surfaces.

4. Positioning uncertainties and calibration insufficien-
cies of MMS are limiting factors when it comes to accu-
rately monitoring deformations. Even existing coregis-
tration methods fail to fix these systematic influences in
the hundredths of a degree accuracy range. Our pro-
posed solution does better by relying on the stability of
the road surfaces.

5. The final step of the processing pipeline computes defor-
mations and tests them for significance.

Structure extraction | — extracted ——
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Correction of Deformation
systematic influences monitoring
/ Panel tilt J'
Segmented P, . Significant
and location
XYZ(o) deformations

a(o), C(o)
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Panel segmentation
and modeling
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Proposed workflow for point-cloud-based deformation monitoring of retaining walls

3.1 | Ground separation

Most high-end MLS systems have two profile laser scan-
ners arranged in butterfly configuration, producing a
cross-pattern-sampling of the pavement with high resolu-
tion. Indeed, MLS generates point clouds with up to two-
thirds of all points lying on the road surface or ground.
Therefore, it is not surprising that most processing strate-
gies start with extracting these points, whether for detailed
pavement analysis or infrastructure inventory (Ma et al.,
2018). The herein described method aims to reduce the
data amount and to accelerate processing time by doing
so.

Given the set P of points P, «—p=
[Px> Py» Pzs Pine)’, we construct a discretized three-
dimensional grid G around the sampled scene. Each grid
cell defines the bounding box for a subset P’ C P by its
centroid coordinates G(i, j, k) «<— g = [g. &y, &.] and its
predefined size s

P' = f(G(i, ], k), P,s). @

Unlike in voxel representations, our grid spac-
ing is nonuniform, that is, it differs in vertical and

FIGURE 4 Raw intensity point cloud (left), point subsets after ground classification (middle) and after concrete panel segmentation
(right)
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horizontal direction s, = s, # s, in general. The domain
of the indices i, j,k depends on the dimensions of the
sampled scene.

The underlying idea of our processing strategy is a
seeded cell-based region growing. It exploits two main
characteristics of the sampled ground or road surface: (a)
its point density and (b) its horizontality. While the former
property results from data acquisition with MMS, the latter
implies that the ground is the object with the least height
variation per distance. Noteworthy, this assumption holds
for inclined roads as well.

To find a potential seed cell, we start by searching for the
vertical slice of grid cells with the maximum point number

Kimax = argmax, Z Z |P'|, @)
7

where P results from (1) and | - | denotes the cardinality of
the point set. Prerequisite is the appropriate choice of the
cell height s, so that the histogram can capture the pre-
dominance of the ground points in the scene representa-
tively.

Within all cells of this extracted grid slice G; j ., we
look for the one that maximizes the point number while
minimizing the z-variation

P!
Imaxs Jmax = argmaxi!j% with
(3)

!’ / /
V4 —{zip<—pZePiP}.

The region growing procedure starts at the found seed
cell. Its region grows with neighboring cells in case that
their minimum z-values do not differ more than a prede-
fined threshold &,. The criterion should be multiple times
greater than the noise of the laser scans on the ground.

Accumulation of all points within the grown cells yields
the cloud with ground points P; (gray point cloud in
Figure 4, middle) and the one without Py = P\ P; (blue
cloud).

3.2 | Extraction of the retaining wall

Within the remaining data set Py, the sampled retaining
wall is presumably smooth and tall. Such properties are
in marked contrast to vehicles, road signs, or vegetation,
resulting in their removal when implementing this logic.
Well-established indicators for a point cloud’s smooth or
roughness are surface normals 7 and their associated
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Algorithm 1 Ground separation

function FINDSEEDCELL P, 5, 5, S,
in: P, sy, sy, s,
Generate grid Gi,j,k « § = [gx7gy’gz]T

for each vertical layer k in grid do

1:

2

3

4

5: for each grid cell i, j in layer k do

6 extract P’ € P in grid cell using f (1)
7 count point number in cells n < n + |P’|
8 end for

9 N, <n,n<0

10:  end for

11:  find layer with max. point number k,,,, = argmaxN;
k

12:  for each grid point G, do

max

13: extract points in grid P/

14: generate set Z’ of z coordinates using (3)
15: compute metric y; ; = |P'|/o(Z")

16: end for

17:  find seed cell in layer k that maximizes
imamjmax = argmaxﬂi,j
L
18: return i ., jmaxs Kmax

19: end function

: function REGIONGROWING &, «— G;

1 massimasoKmas
2 i — Gk

3 initialize region growing candidates C «— {g}
4 initialize list of available grid points A «— {g}
5. whileC # @ do

6 ¢« C

7 C«C\C

8 extract P, € P in grid cell with f using (1)

9 find grid neighbors for ¢in A: N = Q(¢, A,1)
10: for 7 € N do

11: extract P.,, Pj,, € P in grid cell f (1)

12: generate set Z!, Z), of z coordinates using (3)
13: If |min Z! — min Z,| < §, then

14: C«<Cuin}

15: A« A\ {n}

16: Py < P,UP,

17: end if

18: end for

19: end while
20: end function
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surface variations o (Pauly, Gross, & Kobbelt, 2002). These
values derive from principal component analysis (PCA) on
the covariance matrix (or local structure tensor) X of the
local neighborhood N around each point p in the cloud

o)

N= {PR |”pR —prifl <ri=1,.. IPRl}

T
> =

S|~

and its eigenvalue decomposition = = S A S”. The eigen-
vector s, with S = [sg, 57, 5,] with the least eigenvalue 1, >
A1 > A, > 0 corresponds to the modeled plane normal 7,
where the surface variation defines to 0 = 4, /(4p + 4; +
A2).

Ioannou, Taati, Harrap, and Greenspan (2012) extend
the idea of difference of Gaussians (DoGs) in two-
dimensional (2D) to difference of normals (DoNs) in 3D.
They demonstrated its applicability to extract nonsmooth
infrastructure inventory from point clouds. The processing
pipeline adapts this algorithm to achieve the opposite—to
retain smooth and disregard nonsmooth objects.

DoN describes the difference of the surface normals Ar
with different search radii r; and r; (small and large)

A(pg, s, 11) = (AP, 75) = (PR, 11)) /2. ©)

The intuition behind An is a difference vector between
points on the unit sphere, but rescaled to » = 0.5, so that
An lies within [0, 1]. Accordingly, ||Ar|| > € indicates sur-
face discontinuity around py (considering sensor noise
and rounding errors), since the plane orientations deviate
when fitting to smaller and bigger point neighborhoods.
This fact is beneficial to filter out all nonsmooth points by
thresholding the DoN

Py = {PR “lAﬁ(pR’rs’rl’)” < ||Aﬁth||} . (6)

The filtered scene contains smooth but sparse point
groups yet. Spatial clustering of Pg allows to group them
to logical units. Proximity c; and subset size cg are the cri-
teria for forming clusters. The largest one is a cleaned up
subset P of the retaining wall Pg.

One problem that remains is that thresholding in (6)
may remove points of interest because of rough spots on
the surface of the retaining wall. A convex hull repre-
sents a convenient solution to this problem. We use the
quickhull algorithm (Barber, Dobkin, & Huhdanpaa, 1996)
to construct a boundary surface (i.e., the convex hull)
around, which we then use to filter the initial cloud Py after
ground removal. This concept sidesteps the adverse effects
of (6) and retains the full resolution in the extracted point
cloud Pg.
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Algorithm 2 Structure extraction with difference of normals

1: function DONP,, 7,1y, ||Af,|

2:  forall py € Py do

3: compute surface normals 7 and curvature o for
neighboring points within r;, r; radius around py

4: compute DoN: A_)n(pR, 1y, 1g) using (5)

5:  endfor

6:  obtain Pg by filtering Py using (6)

7. return Pg

8: end function

1: functionSPATIAL CLUSTERINGPq, ¢4, C;

2:  initialize clusters C «— @

3 initialize set of available points A «— {Pg}

4 while A # ¢ do

5: extract a point randomly p € A, A — A\ {p}
6 find neighborhood N = Q(p, 4, ¢;)

7 while N # @ do

8 if |C;| + IN| < ¢ then

9

add N to current cluster C; «— N

10: update set of available points A «— A\ N

11: pick point and add its neighbors to N: p € N,
N «— NUQ(p,A,cg)

12: end if

13: end while

14: initialize another clusteri «— i+ 1,C «— C U {}

15  end while

16:  find largest cluster Py «— argmax|C;|
i

17:  return P

18: end function

3.3 | Anchored panel segmentation and
modeling

When it comes to the failure of individual anchors, the
consequent redistribution of loads may result in inho-
mogeneous deformation patterns across the structure. To
account for these, it is therefore desirable to detect and
investigate (anchored) concrete panels individually. The
detection algorithm relies on their smoothness as well
as on the vertical and horizontal block joints that sepa-
rate them.

As outlined in Section 3.2, surface normals are useful to
reveal continuities and discontinuities of the scanned sur-
face. Nearby points, whose surface normals point approx-
imately in the same direction, will likely describe a
smooth surface. The outcome depends on the number of
neighboring points that lie within the defined search
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radius r and contribute to surface normals estimation.
Multiscale approaches attempt to avoid this parame-
ter selection in segmentation tasks (Hackel, Wegner, &
Schindler, 2016). While these are less prone to varying
point densities and noise, a data and task-adapted radius
can provide better results, though. Essentially, the sup-
port radius needs to be small enough so that block joints
become visible in the surface normals.

In fact, any smooth surface is approximable with planes
at a small scale. However, the drawback of small support
radii is that noise or single outliers can destabilize the total
least squares plane estimates (i.e., the PCA) heavily. Con-
sequently, we seek for a robust concrete panel segmenta-
tion at normals level (Nurunnabi, Belton, & West, 2014). In
such a multivariate setting, every point v; in the neighbor-
hood N, whose Mahalanobis distance (MD) to the center

Mp(5 ) = \/ (=) 5 (-F) )

exceeds the elliptical tolerance (two-sided test,

2
X3,0.975
significance level of 5%), is a putative outlier. Unfortu-
nately, outliers affect the mean N and the covariance
matrix Xy, so that MD suffers masking effects. A popu-
lar, robust estimator for location N and scatter X is the
minimum covariance determinant (MCD). It tries to find
a subset Ny;cp with & points in the query point’s neigh-
borhood N whose covariance matrix has the smallest
determinant

detZy, ., = A 4y A3 = min, ®)

where h is a variable integer parameter that controls the
trade-off between robustness and computation speed and
lies in [(n + 4)/2;n]. Because of its low computational
efficiency, we favor the faster variant DetMCD (Hubert,
Debruyne, & Rousseeuw, 2018; Rousseeuw & Driessen,
1999) over the classical MCD. The subset Ny;-p replaces
N in (4) to obtain robust normals eventually. This is a cru-
cial step for the segmentation quality, especially when sur-
face normals define the homogeneity criteria. Starting at
any query point q in Py, regions grow with adjacent points
p in case that (a) the enclosed angle of surface normals
is

—<ﬁ”’ﬁq> < Aa 9)
[ - 1]

(b) the orthogonal distance is < p — q, fiq >< AQ, and (c)

arccos

the euclidean distance does not exceed ||p — g|| < Ae.
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3.3.1 | Modeling

Each of the resulting segments o, with 7 = 1,...II (IT is
the total number of concrete panels) contains point sub-
sets P, € Pg that represent individual concrete panels
(Figure 4, right). Although the structural deformation pat-
tern can be arbitrary, these separate logical units will expe-
rience rigid-body movements in the first place. The com-
position of all elements’ movements then provides an intu-
itive and realistic model of the overall structural behavior
(strain, bending, and distortion). The underlying principle
is similar to finite element methods but stands out in terms
of modeling quality at low complexity.

The surface of retaining walls and therefore its concrete
panels are planar in most cases. However, the surface qual-
ity of these elements deteriorates over time (e.g., spalling or
corrosion cracking), or vegetation may cover partial areas
of the surface. Consequently, the sampled point cloud of
the panels can systematically deviate from a plane. To mit-
igate the impact on the derived deformations, it is essential
to apply robust methods such as RANSAC (random sam-
ple consensus) or DetMCD (deterministic algorithm for
MCD) at this stage. The robust panel location C,, «— E
corresponds to the centroid of the outlier-free subset. Its
orientation «a, refers to the estimated plane normal o =
arccos(n,).

3.4 | Compensation for systematic
influences

One remaining issue is the positioning uncertainty of the
mobile mapping platform. We can expect location errors
from differential GNSS positioning of a few centimeters
in the best case. These directly influence the computed
panel location.

In terms of orientation, today’s high-grade IMUs
achieve roll and pitch root-mean-square (RMS) errors of
better than 0.01° (Applanix, 2017). While the individual
sensors suit our requirements, the combination of all
sensors proved to be the limiting factor in practice. The
lever arm calibration parameters change over time and
with varying external influences (vibrations, temperature,
etc). A recalibration of the rotation angles with high-
quality, that is, in the range of hundredths/thousandths of
a degree, is challenging.

Positioning uncertainties and calibration insufficiencies
evoke a tilting of the horizon with direct influence on n,,
and thus, on panel orientation «, and on location C,. As
the MMS passes by, these systematic errors will likely affect
the complete, sampled scene of the retaining wall’s sur-
roundings. Therefore, there are two ways to address these
systematic influences:
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FIGURE 5
line markings by thresholding laser intensity (right)

1. Identifying stable areas in point clouds.
2. Estimating the systematic offset by passing by the struc-
ture in two opposite driving directions.

The former is preferable due to lower time and cost effort
but applies only if the scene did not change too much, that
is, no construction works took place in between the mea-
surement campaigns.

In such road and highway settings, the road pavement
is a recurring object class candidate that provides a vast
number of points for alignment. However, existing point
cloud registration approaches are limited when it comes
to aligning road surfaces to each other. Iterative closest
point (ICP) and kernel correlation (Tsin & Kanade, 2004)
methods do not converge sufficiently for a large number of
points and feature-based matching fails (Spezialetti, Salti,
& Di Stefano, 2019; Tombari, Salti, & Di Stefano, 2013) due
to the lack of key points. The problem-tailored method
extracts definite, corresponding road sections Pg (j) from
two ground point clouds Pg (see Section 3.1). The centroid
coordinates of a concrete panel, its size, and its normal vec-
tor define the cut-out region for individual columns j (see
Figure 5, left). Pavements of road networks are planar sur-
faces in general, considering ruts and potholes to a small
extent too. The robust normal vectors 7 (j) of the road
sections Pg (j) describe a point set on the unit sphere, typ-
ically interpreted as extended Gaussian image (EGI; Horn
(1984)). This idea simplifies the registration problem and
provides significant benefits in terms of

* direct correspondences between points (panel columns),
* translational invariance of the normals.

The rotation matrix that aligns the EGI p = ng (j, t,)
and q=ng(j, ;) best in a least-squares sense is

!
2;’;1 w;|R p; — q;| = min. According to Sorkine (2009), R
results from

Xi=Dpi— P Yi=4qi—¢q,
S=xYT,

KALENJUK ET AL.

Road surface analysis for fixing systematic influences: extraction of distinct road sections by using concrete panels (left) and

S=UzVvT,

R =Vdiag(1,1,det(VUT)) UT. (10)

Through incorporating (10) in an iterative RANSAC
scheme, outlier-free correspondences X «— Y remain for
the least-squares estimation.

Recalling that P is a sample of a surface with small
height variations, the quality varies for the estimated
rotation angles R = R,(¢) R, (0) R,(1). While the heading
angle is less reliable, the high point density of the road
sections allows fixing the horizon tilting with 6 and ¢ accu-
rately.

For bias-free panel locations C, it is necessary to fix
another three degrees of freedom: heading (¢) and trans-
lation (x, y). On that account, we extract road line mark-
ings based on the reflected laser intensity signal (see
Figure 5, right) for both epochs ¢; and t,. We estab-
lish direct correspondences through the centroids of the
segmented line markings and compute a 2D variant of
(10) to retrieve R € R? and f = [t,, ty]". We can dis-
regard t, and leave one degree of freedom unresolved
because

1. tilting and lateral displacements are a more com-
mon failure mode than settlements (see Section 1)
and

2. laser scanners are less sensitive to in-plane move
ments.

3.5 | Deformation monitoring

Changes in the plane’s key parameters thus indicate struc-
tural deformations between two epochs ¢,,_; and t,,. Tilt-
ing of the concrete panel Aa refers to the plane’s tilt
change w.r.t. the z-axis and lateral displacement Ao cor-
responds to the averaged orthogonal distance to the fitted
plane
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Algorithm 3 Compensation for systematic errors

1: function FIXROLLPITCHC(t,,t,), N(t;,t,), Pg(t1,t5), L w

2: cluster panel centroids, normals to columns C*, N*

3:  forj«—1,..,|C*| do

4:  extract coordinates p «— C}* € C;i‘ and surface normal
n«—N i S N ;‘
of one element within column j

5: compute 2D boundaries for road surface
By =P+ -fi-1+q-wwith3g[|p| - 1g| = 0] and
i,k =1[0,1]

6 extract road surface patch Pg(j) with B

7: compute road normal 7i5(j)

8 end for

9 compute rotation matrix R using (10)

10: returnR

11: end function

function FIXHEADINGTRANSLATIONP (¢, t,)
filter intensity values for Vp};, : p > O

form clusters £ of line markings for P,

ER I B oe

establish correspondences for £(¢;) and L(t,) and compute
R using (10) in the 2D case

v

apply R and compute I
6: returnR,(¢),[

7: end function

Aa = arccos (n, (t,_;)) — arccos (n, (t,)),

: . m
80 = (5(3), 1(3), 53" (Ct1)CED) ),

with s;(3) referring to the third element of the correspond-
ing eigenvalues of the point subsets P,,.

3.5.1 | Statistical testing

Within the scope of deformation monitoring, statistical
tests objectively assess whether concrete panel’s tilt and
location (11) changed significantly. This essential aspect
requires, however, knowledge about the variance of the key
parameters (Caspary & Riieger, 1987; Cooper, 1987). There
exist two ways to derive statistical variance for each con-
crete panel.

1. Error propagation. The eigenvalues of the point cloud
P, of a segmented concrete panel describe the data vari-
ance in direction of the principal components. Con-
sequently, var (Ao) = A;. The uncertainty of the con-
crete panel orientation corresponds to the ratio of the
eigenvalues of the covariance matrix var (8;, 5,) =
[A3/41, A43/25] (Quinn & Ehlmann, 2019). var (34, $,)
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describe the angular uncertainty in direction of the
principal components 03, U,. According to its definition
(8), DetMCD (deterministic algorithm for MCD) mini-
mizes the product of the eigenvalues and not 43 solely.
Thus, in most cases, 4 is smaller when using RANSAC.
This fact is misleading, as it suggests RANSAC to yield
more precise results, although Aa and Ao converge to
the deterministic results of DetMCD when executed
multiple times.

2. Empirical quantities. An alternative is to multiply
sample each concrete panel and to compute the vari-
ance in tilt and location empirically. This solution is
favorable, as it turns out that the theoretical quantities
tend to overestimate the standard deviation by a factor
of 5to 15.

In terms of statistical testing, the null hypothesis becomes
Hy : E{Aa, Ao} = 0 and the alternative hypothesis is H, :
E{Aa, Ao} # 0. Given normally distributed populations
with unknown but equal variances (derived empirically
from one epoch), the test statistics for the mean differences
f = (A& — 0)/sp4 follows a Student-t distribution. Conse-
quently, we can derive thresholds for identifying signifi-
cant deformations by rearranging the test criterion, that is,
|A&| > Spq - tf o975 - Note that 95% is a standard value for
the confidence interval in deformation monitoring (e.g.,
DIN 18710-1, 2010, p. 17).

4 | CASESTUDY

4.1 | Retaining structures

The retaining structures of this case study are located in
the mountainous region of Bischofshofen in Salzburg, Aus-
tria. The selection includes five anchored walls along the
motorways B311 and the A10 Tauern highway. Besides the
fact that these objects have slender cross sections, a height
up to 24 m while next to the highway and an age up to
50 years, inspections revealed anchor corrosion, which, in
times of 24,000 vehicles closely passing by every day in
2019 on average, poses a high risk (Asfinag, 2020).

4.2 | Sensor hardware

Our methodology is not limited to a specific hardware
or sensor manufacturer. Any MMS (laser scanners +
positioning system) that is available for purchase on the
market is applicable. In our project, the engineering com-
pany Amberg Technologies provided the MMS for the mea-
surement campaigns. Besides two Z+F 9012 profile scan-
ners (200 Hz mode), the MMS consists of a high-grade

85U8017 SUOWILLOD 3A 18810 3(dedl|dde ayy Aq peusenoh ae Sspiie YO ‘8sN JO S9InJ 0§ Akeid1T8UIUO A8]1M UO (SUOIPUOD-pUe-SWLSI W00 A8 |ImAreIq Ut |uo//SdnL) SUORIPUOD PUe SWLB | 8L 88S *[£202/90/22] U0 ARIqiTauluO AB|IM BLISNYBURI0D A 959ZT 80 IW/TTTT OT/I0P/W0 A8 | iM Atelqiul|uoy/sdny wouy pepeojumod ‘9 ‘T20 ‘2998/9%T



688

KALENJUK ET AL.

FIGURE 6
TABLE 1 Information about selected retaining structures and
the data acquisition
Observed in Epoch

ID Height (m) Length (m) 1 2 3 4

A3 6.5 85 X X2 X X

A4 6.5 255 X X X X

A4 2 8 135 X X X

A5 22 400 X X o oxeb

A6 23.5 370 X X X X

Note: ® New anchors installed before measurements.
b Wall refurbished; additional concrete elements installed.

positioning system: an Applanix LV510 positioning sys-
tem (200 Hz) with a Trimble multi-GNSS, a fiber-optic-
gyro IMU 46, and an odometer (distance measurement
instrument [DMI]) attached to a rear wheel. In addition
to the MMS’ GNSS/IMU/DMI data, the computation of
the trajectory incorporates GNSS data of surrounding con-
trol points of the Austrian reference network. The scan-
ner’s butterfly configuration is symmetrical, that is, +45°
w.r.t. driving direction and —30° w.r.t. the horizontal plane.
This configuration is beneficial for minimizing shadowing
while providing roughly the same distances and incidence
angles for both scanners. The calibration of the lever arm
took place shortly before the actual data acquisition.

4.3 | Data acquisition

Figure 6 gives an overview of the retaining structures,
their relative location, and properties. For a better intu-
ition about the dimensions, Table 1 points out their key
parameters.

RGB colored point clouds (left) and detailed photos of the structures (right) of interest

TABLE 2 Dates and average temperatures at measurement
campaigns
Epoch Date T (°C)
1 08-06-2016 22
2 20-06-2017 30
3 14-02-2018 —4
4 23-10-2018 13

Structure A5 was not part of the measurement cam-
paigns from the beginning and underwent a comprehen-
sive refurbishment in 2018, leaving only two epochs avail-
able for deformation monitoring (see Table 1). Another
aspect worth mentioning is that extensive vegetation at top
of A4 shadowed the surface of A4_2 entirely in the first
epoch (Table 1).

The ambient conditions differed significantly between
the epochs (Table 2). While temperature is only one influ-
encing factor, it deserves consideration when interpreting
results (Section 5.3).

43.1 | Procedure

For the sake of comparability, the procedure of data collec-
tion was the same in all epochs. The MMS (installed on a
car) was traveling on the first lane next to the emergency
lane, while escort vehicles behind controlled the traffic for
safety reasons. Each epoch, we passed by the structures five
times to investigate varying driving speeds, ranging from
60 km/h (2 %), 80 km/h (2 X) to 100 km/h (1 X).
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TABLE 3 Parameter selection for individual processing steps

Parameter Equation/Section Description

Sy =5,=015m 31 Grid cell size

s,=1m 3.1 Grid cell height

6, =0.01m 3.1 Ground removal
criteria

ry = 0.25,m 6) Small-scale radius

re =1.5m (6) Large-scale radius

[|AR,, || = 0.2 6) DoN threshold

cg = 0.15m 3.2 Spatial clustering
distance

cg = 10* 3.2 Spatial clustering size

Aa = 2.5° ) Enclosed angle of
normals

AQ =0.01 m ) Orthogonal distance

Ae =0.2m ) Euclidean distance

TABLE 4 Absolute and relative execution times of the
processing steps

Step Abs. time (s) Rel. time (%)
Ground extraction 2,447 25.3

Structure extraction 445 4.6

Robust normals 5,555 57.4

Panel segmentation 271 2.8

Panel modeling 27 0.3

Tilt compensation 911 9.4
Translation 16 0.2

4.4 | Data processing

Our processing methodology runs highly automated in
C++ and Matlab. The implementations invoke PCL (Point
Cloud Library v1.8.1, Rusu & Cousins, 2011) for point cloud
processing, and the LIBRA library (Verboven & Hubert,
2005) for the robust MCD estimator.

Table 3 lists the parameters used for processing data
of the case study. Most of them are robust regarding the
parameter selection, while the homogeneity criteria for
separating the concrete panels (9) are the most sensitive
for the outcome. Depending on sensor noise or the type of
wall, fine-tuning might be necessary.

The runtime that our implementation takes to out-
put deformations from two point sets with approximately
25 million points each is around 2.5 h on a standard
machine (i7 6800k, 64GB RAM). Table 4 indicates that
those steps that involve the MCD estimator (e.g., robust
normals) suffer from low efficiency, even when imple-
mented in a parallelized fashion. The required runtime is
an aspect to address in future. It is reducible by imple-
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menting more intelligent pattern recognition methods.
Nonetheless, the present implementation achieves a sig-
nificant reduction of workload over conventional, manual
approaches through automation.

5 | RESULTS

5.1 | Repeatability

Mobile mapping and tailored point cloud processing meth-
ods promise the delivery of valuable information for safety
assessment along roads at high efficiency. However, the
central question is whether we can trust this information.

For instance, if we pass by a retaining wall twice within
a short time, does the proposed approach yield the same
tilt a and location C for the concrete panels? What are
the minimum tilt changes and deformations that can be
detected?

Answers to these questions can give statistical analyses
of our field studies. We can regard two tilt values «;, a, ofa
segmented panel o as statistically equal in case the hypoth-
esis test fails to reject Hy, : E{a,(0) — o;(0)} = 0.

The tilt difference distribution ct, — a; (Figure 7) unveils
interesting aspects for retaining walls A4 and A6 (samples
of epoch 2017):

* The histograms approximate to normal distributions.
The average panel tilt deviation centers around zero,
hence E{a, — a;} ~ 0.

* The impact of the driving speed is negligible for our
hardware setup (two laser scanners). There are no sig-
nificant differences when driving 60, 80, or 100 km/h.

* In contrast, the panel height influences the variation of
the values. This becomes obvious when comparing the
distributions of A4 to A6. A4 consists of one row of pan-
els with a height of 6.4 m. On the contrary, A6 is a struc-
ture with up to seven panels in a column, each of which
with a height of 2.7 m.

* Based on the statistics, we derive the 95% confidence
bounds for A3 and A4 to ¢ = +0.03° (= +3.5 mm at 6.4
m height) and for A4_2, A5,and A6toc = +0.05°. These
can serve as benchmark for identifying significant defor-
mations.

The essence of our studies is that we can drive with up
to 100 km/h and still achieve a remarkable repeatability of
panel tilting with the described methodology. Converting
panel tilting to the displacements at the top of a panel, we
obtain +3.5 mm (95%), which compares to traditional sur-
veying methods.

Within our considerations about the impact of driv-
ing speed, we assumed homogeneity across the structure.
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FIGURE 7

Hence, instead of sampling each panel multiple times,
we draw conclusions from all panels (sample size n =
57/403). While this works well for structures A5 and A6, it
is less suitable for A3, A4, and A4_2 with a small number
of concrete panels and with considerably varying heights
(leading to outliers in Figure 7 , left). Our approach for
A3 and A4 is hence to derive statistics for each panel
separately. This time, the sample consists of the tilt val-
ues computed from each measurement drive (sample size
n=>5).

5.1.1 | Lateral displacements

The same questions arise for relative panel displacements,
as they turned out as indicators for the structural perfor-
mance of high anchored retaining structures, for example,
A5 and A6. Referring to the already described principle, we
analyzed the reliability and obtained significance thresh-
olds for lateral displacements of ¢ = +1.5 mm (95%) for A6
and A5 by taking all concrete panels into account. Individ-
ual panels reach deviations up to +3 mm.

Panel tilting [1072 "]

FIGURE 8
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60 km/h
0.2 | | == 80 km/h Ref: 60 km/h
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= 100 km/h

-0.1 -0.05 0 0.05 0.1
Tilt deviation [°]

Histogram of panel tilt deviations for A4 (left) and A6 (right) w.r.t. reference drive (60 km/h)

5.2 | Systematic influences
Regarding the figures and numbers presented in Sec-
tion 5.1, it is tempting to assume that mobile mapping
could achieve superior repeatability to conventional sur-
veying methods. The problem is that these values apply
perfectly under constant conditions: sensor-to-object dis-
tance, environmental conditions, and hardware setup.
Figure 8 shows apparent tilt changes that resulted
when collecting data of retaining structure A6 in two
opposite driving directions. With the processing scheme
presented in Section 3.4, we are able to compensate for
calibration insufficiencies that evoke a horizon tilting of
approximately 0.05° (shifting in the histogram).

5.3 | Deformations

5.3.1 | Structures A3 and A4

‘We deployed our data processing strategy to the gathered
data sets of all four epochs. Figure 9 depicts the computed

0.15 «‘ [ raw [ corrected }»

e
—_

Probability

0.05

-0.1 0 0.1
Panel tilting [°]

Panel tilting for data sets acquired in opposite driving directions: with and without compensation for systematic influences
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FIGURE 10 Deformations of A6 for epoch 1—3: panel tilting and lateral displacements (left) and multitemporal deformation of a cross

section (gray rectangle) of A6: lateral displacements (right)

tilting for individual concrete panels alongside the struc-
tures A4 and A3. The reference epoch is 2016.

The gray bands indicate the thresholds for identifying
significant deformations with 95% confidence. Regarding
Figure 9, left, the majority of segmented concrete panels
do not tilt significantly relative to epoch 2016. However,
10 consecutive of them (between station 170 and 220 m)
consistently incline with a positive sign (toward the road)
for all periods. Our modeling strategy highlights the good
coincidence along the structure and across the epochs in
this region, suggesting systematic changes but certainly no
outliers. Nonetheless, even in the case of long-term defor-
mations, there is no reason for concern, as the inclination
stabilizes after epoch 2017.

In contrast, A3 (Figure 9, right) shows spikes at the
boundaries (station <5 m and >70 m). It is worth men-
tioning that the size of these panels is small, and extensive
vegetation covered the wall in 2016. Otherwise, deforma-
tion analysis approves the long-term stability of the struc-
ture, when regarding epoch 2017—2018/10. The reason for

the negative inclination changes (tilting toward the slope)
might be the installation (and prestressing) of new anchors
between epoch 2016 and 2017. Albeit significant tilting,
structures deformed to no hazardous extent, though.

5.3.2 | Structures A5 and A6

The impact of seasonal variations (temperature and precip-
itation) on the high retaining structures A5 and A6 is con-
siderable (Figure 10). At time of data collection, the air tem-
perature difference between epoch 2016 and epoch 2018/02
was AT = —34 K. As response to dramatically changing
conditions, A6 showed significant tilting toward the high-
way in the upper part of up to +0.1° (threshold of +0.05°
derived in Section 5.1). This thermally induced impact
leads to a banana-shape deformation pattern of A5 and A6.
As a result, we see lateral displacements of the concrete
panels on top of up to 12 mm (see Figure 10 , right). This is
a nonpermanent behavior of A6, as the structure relaxes in
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the subsequent epoch. No significant deformations remain
when comparing data of epochs 2016 and 2018/10.

5.3.3 | Validation

We use geodetic monitoring data for validating our results.
An engineering company performed optical surveys to tar-
gets mounted on the anchored concrete panels. Based on
the coordinate frame’s orientation, we can directly com-
pare our lateral displacement of A6 and A5 with the refer-
ence data (46 and 75 targets, respectively). For A3 and A4
(34 and 54 targets), we derive tilting from the coordinate
differences of two targets aligned in a profile.

Reference data are available at infrequent intervals only,
which, however, complies well with our results for A5 and
A6 for the epochs 2016 to 2018/10. In fact, the reference
measurements did not reveal any significant deformations
for the structures. This holds true for structures A3 and A4
between 2017 and 2018/10 as well.

6 | CONCLUSION

Within this paper, we presented an approach for monitor-
ing the tilt and the lateral displacement of a large number
of retaining walls. An extensive field study revealed the
method’s high repeatability when using high-qualitative
MMSs and our proposed processing pipeline. It exploits
the high data redundancy and corrects for systematic influ-
ences that reached up to 0.05° in our case. The minimum
tilt that is detectable is in the range of hundredths of a
degree and for lateral displacements below +3.5 mm (with
95% confidence). These values compare to traditional sur-
veying methods.

According to our evaluations, two of the investigated
high retaining walls respond to seasonal variations and
deform in the upper part with up to 12 mm. However, this is
no lasting behavior, as no deformations remain when com-
paring the geometry under similar ambient conditions.
Our results comply well with geodetic reference measure-
ments, indicating no significant geometry changes by the
end of the field study.

For infrastructure operators, the question is whether the
structures behave as they expect them to. Structural mon-
itoring can help, but it requires an accurate interpretation.
Without numerical models or fundamental data, it is up to
experts to distinguish between normal behavior and signs
of deterioration. Most commonly, experts thus focus on
identifying changes and anomalies.

The proposed method provides objective data for safety
assessment while standing out in terms of efficiency. Its
widespread application to many retaining walls at high fre-

@ KALENJUK ET AL.

quency (and different seasons) is promising for identify-
ing abnormal behavior of objects at a large scale. Conse-
quently, experts can then apply more detailed monitoring
schemes to selected, critical structures.
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