
Subterranean positioning for a semi-autonomous
robot supporting emergency task forces

Eva Reitbauer
Institute of Geodesy

Graz University of Technology

Graz, Austria

eva.reitbauer@tugraz.at

Christoph Schmied
Institute of Geodesy

Graz University of Technology

Graz, Austria

schmied@tugraz.at

Hamid Didari
Institute of Software Technology

Graz University of Technology

Graz, Austria

hamid.didari@ist.tugraz.at

Abstract—This paper proposes a positioning algorithm for a
semi-autonomous robot in subterranean scenarios. The robot is
equipped with positioning sensors, imaging sensors, and sensors
to detect hazardous materials. The sensors can be used to auto-
matically generate a site map to increase safety for emergency
forces. To create an accurate map, the position and attitude
of the robot have to be determined. This is done using an
extended Kalman filter which fuses data from LIDAR, wheel
odometry, and a MEMS IMU. Tests were carried out in a tunnel
in Eisenerz, Austria. To evaluate the achievable accuracy, the
estimated position of the filter is compared to a ground truth.
The results show that with the developed sensor fusion algorithm,
a horizontal positioning error of 1.07% of the traveled distance
can be achieved.

Index Terms—subterranean positioning, semi-autonomous
robot, extended Kalman filtering, odometry, IMU, LIDAR, GICP

I. INTRODUCTION

Accidents in tunnels our underground infrastructures are ex-

tremely demanding for emergency task forces. Poor visibility,

smoke, high temperatures, released hazardous materials and

structural hazards are among the factors that not only challenge

the emergency personnel, but also push equipment and devices

to a limit.

A study by Njå and Svela (2018) [1] investigates concerns

about tunnel fire safety from the first responders’ perspective.

It analyses that there are many uncertainties for firefighters

when entering a tunnel after an accident: there might be no

means of communication or it may be unclear whether the

ventilation system works. Furthermore, there are uncertainties

regarding the fire intensity and toxicity, since it is unclear

which (potentially hazardous) goods were transported into the

tunnel before the accident.

One approach to assist first responders during these danger-

ous and time-sensitive operations is to rapidly map the envi-

ronment using robots, which was also the goal of the DARPA

Subterranean Challenge [2]. A similar approach is taken by

the research project ROBO-MOLE: here, a wheeled robot

is equipped with positioning sensors, imaging sensors, and

sensors to detect hazardous materials. The aim of the project

is to automatically generate a site map so that emergency task

forces get a rapid and clear overview of the current situation.

To accurately map the environment, the position and attitude

of the robot have to be determined.

The position of a robot can be estimated in various ways

depending on what type of sensors are in use. Each sensor type

(e.g., laser scanner, radar, camera, GNSS, etc.) has advantages

and disadvantages. While Global Navigation Satellite Systems

(GNSS) provide high absolute accuracy in outdoor scenarios,

they cannot be used in subterranean environments and tunnels.

Typically, methods of position fixing and dead reckoning

are combined [3] to optimally estimate the position of a robot.

Among the technologies that can be used for position fixing in

tunnels are WiFi, RFID, Ultra-Wideband (UWB) [4]. However,

all these technologies depend on infrastructure (e.g. power

supply), which might not be working in the case of a tunnel

fire.

The selection of positioning sensors heavily depends on the

environment the sensor should be used in. This work focuses

on tunnels, which typically have low lighting conditions.

Additionally, there will be smoke in the case of tunnel fires,

which hinders the use of cameras. In that regard laser scanners

have proven to be a reliable technology to use in underground

scenarios. While a laser scanner can cope with problems like

smoke and bad lighting conditions, the uniform structure of

a tunnel means that data from different locations are very

homogeneous and hard to distinguish.

A study by Zhao et al. (2021) [5] investigated the per-

formance of different LIDAR Visual-Inertial-Odometry algo-

rithms in challenging environments. The authors tested LOAM

[6], LIO-SAM [7], VINS-Mono [8], Depth-enhanced VINS

and Super-Odometry [5] in a long corridor in an apartment

building. Similar to a tunnel, a long corridor lacks distinct

geometric features and is challenging for LIDAR-based algo-

rithms. The maximum error of LOAM was 9.44 m, of LIO-

SAM 6.52 m, of VINS-Mono 9.02 m and of VINS-Depth

6.15 m. Super-Odometry, the algorithm that won the DARPA

Subterranean Challenge, had a maximum error of 0.35 m.

Studies that focus on high-precision navigation of au-

tonomous robots with laser scanners in tunnels ([9], [10]) use

Simultaneous Localization and Mapping (SLAM) in combina-

tion with reflective beacons every 15 m to improve precision.

Again, in the case of a tunnel accident we cannot assume to

have beacons available.

978-1-6654-0575-1/22/$31.00 ©2022 IEEE

20
22

 In
te

rn
at

io
na

l C
on

fe
re

nc
e

on
 L

oc
al

iza
tio

n
an

d
GN

SS
 (I

CL
-G

N
SS

) |
 9

78
-1

-6
65

4-
05

75
-1

/2
2/

$3
1.

00
 ©

20
22

 IE
EE

 |
 D

O
I:

10
.1

10
9/

IC
L-

GN
SS

54
08

1.
20

22
.9

79
70

32

Authorized licensed use limited to: Technische Universitaet Graz. Downloaded on December 15,2022 at 06:14:23 UTC from IEEE Xplore. Restrictions apply.

To support the laser scanner, we can use information of

dead reckoning sensors, which are infrastructure-independent.

Although dead reckoning sensors have a high short-term

accuracy, they have a poor long-term accuracy, which means

that they start to drift with time or distance covered. In this

study, we use an Inertial Measurement Unit (IMU) as well as

the steering angles and wheel velocities to obtain odometry

information.

The aim of the paper is to develop an Extended Kalman

Filter that fuses data from a laser scanner, wheel odometry,

and an IMU to estimate the position, velocity and attitude

of a mobile robot. The developed algorithms are tested in a

real tunnel scenario and evaluated regarding the achievable

accuracy for position and attitude.

The paper is structured as follows: in section II we describe

our Methodology, where we first give an overview on the

used robot and navigation sensors in subsection II-A. We then

explain the Extended Kalman Filter (EKF) and how we process

the navigation sensor data to estimate position, velocity and

attitude of the robot in subsection II-B. Subsection II-C

describes the software development in ROS and subsection

II-D gives an overview of the field tests. In section III we

present the results and analyse which positioning accuracy can

be achieved by comparing the estimated position to a ground

truth. In section IV we discuss the results and conclude the

paper.

II. METHODOLOGY

A. Robot and Positioning Sensors

A custom-built robot [11] by the Institute of Software

Technology of Graz University of Technology is used as a

mobile platform (see Figure 1). The robot has four wheels

that can be steered independently.

Fig. 1. Picture of the wheeled robot used in this study. Photo by Disaster
Competence Network Austria (DCNA).

The following positioning sensors are mounted on the

robot and are used in this study to determine the robot’s

position in a subterranean environment: a LIDAR by Velodyne

(Velodyne Puck, VLP-16) and an Inertial Measurement Unit

(IMU) by XSens (XSens MTi-G-710). To obtain the steering

angles and wheel speeds that are needed to compute odometry

information, readings are taken from sensors that are directly

installed on the robot. For the steering angles, the positions of

the linear actuators are measured and converted to angles; for

the wheel speeds, the rotary encoders (3 Hall sensors within

the motors of the wheels) are used to measure the revolutions,

which are then converted to speeds in metres per second.

B. Extended Kalman Filter for Estimating the Position and

Attitude of the Robot

To estimate the position and attitude of the robot, we use

an Extended Kalman Filter (EKF) to fuse measurements from

the laser scanner, wheel encoders, and the IMU. A Kalman

filter is a Bayesian filter which estimates the state vector in

three recursive steps, which are explained in the following.

In the first step, the so-called time update or prediction step,

the estimated state vector x̂ and its corresponding covariance

matrix P of the previous epoch k − 1 are predicted to the

current epoch k with

x̃k = ϕk−1(x̂k−1), (1)

P̃k = Φk−1Pk−1Φ
T
k−1 +Qk−1. (2)

Here, x̃k and P̃k are the predicted state vector and predicted

covariance matrix at the current epoch k. ϕ is a vector

containing the dynamic functions [12] describing how the state

changes from epoch k − 1 to k. Φk−1 contains the linearised

dynamic functions with respect to the estimated state vector x̂

of the previous epoch k−1. Q is the system noise covariance

matrix.

In the second step, called gain computation, the Kalman

gain matrix is computed from

Kk = P̃kH
T
k

(
HkP̃kH

T
k +Rk

)
−1

, (3)

where Hk contains the linearised observation functions with

respect to the predicted state vector x̃ at epoch k and Rk

is the covariance matrix containing the observation noise.

Furthermore, the reduced observations δzk are computed from

δzk = Hkx̃k − zk, (4)

where zk are the observations or measurements at epoch k.

In the third step of the Kalman filter, called measurement

update or correction step, the error state vector is computed

from

δx̂k = Kkδzk, (5)

and then used to update the state vector by

x̂k = x̃k − δx̂k. (6)

The covariance matrix of the state vector is updated by

Pk = (I−KkHk) P̃k. (7)

In our study, we use the described EKF to estimate the error

state vector of the robot. We define the error state vector as

δx =
(
δρ δv δe δbg

)T
, (8)

where δρ stands for the position errors (δϕ, δλ, δh), δv
stands for the velocity errors in a North-East-Down-frame, δe
contains the attitude errors in Euler angle (roll, pitch, yaw)

notation, and δbg is the gyro bias error.

Authorized licensed use limited to: Technische Universitaet Graz. Downloaded on December 15,2022 at 06:14:23 UTC from IEEE Xplore. Restrictions apply.

LIDAR

Wheel odometry

Point cloud

Wheel speeds,

steering angles

GICP matching

algorithm

4WIS4WID

odometry

Extended

Kalman-

Filter

Position,

velocity,

attitude

IMU
Accelerations,

angular rates
Strapdown

Fig. 2. Filter architecture for LIDAR, wheel odometry and IMU data to
estimate position and attitude of the robot.

To fuse information from all sensors, we use a cascaded

filter architecture [3], which is depicted in Figure 2. Here,

wheel odometry and LIDAR are used as aiding sensors,

which means they are used in the measurement update or

correction step of the EKF. The IMU is used as the reference

navigation sensor, i.e. it is used in the time update or prediction

step to propagate the state vector. How the measurements

are preprocessed before being inserted into the filter will be

explained in the following.

1) LIDAR as Aiding Sensor: One way of estimating the

robot’s pose is utilising the point cloud from the laser scanner.

A transformation matrix (T) can be estimated by comparing

the current point cloud to the previous one. Multiplying these

transformation matrices over time will result in the estimated

pose of the robot (X) at epoch k:

Xk =
k∏

i=0

Ti. (9)

Iterative Closest Point (ICP) was introduced as a method of

matching a source point cloud (P) and a target point cloud (Q)

[13]. First, ICP finds the corresponding points (pi and qi) in

P and Q. Then, it estimates the optimal transformation T to

minimise the distance between matched pairs of points. These

two steps are executed iteratively until some termination cri-

terion is satisfied. Two variations of ICP are commonly used:

ICP point-to-point and ICP point-to-surface. These variations

have different cost functions.

The ICP point-to-point extracts the corresponding points

with the nearest neighbor method. Then, T can be estimated

by utilising Singular Value Decomposition (SVD) [14] to

minimise the cost function fp2p:

fp2p =
N∑

i=1

||pi −Tqi||
2, (10)

where N is the number of points in the point cloud. Outlier

points result in a noticeable noise with this cost function. The

algorithm’s sensitivity to noise can be reduced by using the

local neighbourhood in the target point cloud [15]. In the ICP

point-to-surface method, the local neighbourhood points of

qi are marked as a surface to be used instead. The normal

vector ni of a surface can be extracted with the help of the

eigenvectors of the covariance matrix Ci of the surface.

Now, instead of minimising the distance between corre-

sponding points, the algorithm tries to minimise the projection

of the distance onto the local surface. The cost function for

ICP point-to-surface is given in the Equation 11.

fp2s =
N∑

i=1

||(pi −Tqi)ni|| (11)

Using a surface for target point cloud improves the robustness

against noise, but the ICP point-to-surface assumes a noise-

free source point cloud. A real-world scenario would have

noise in both source and target point clouds. Thus, to ade-

quately counter the effect of noise, Generalised-ICP (GICP)

matches surface p̃i to q̃i [16]. These surfaces are defined by

their covariance matrices, calculated based on neighbourhood

points as given in

p̃i ∼ N (p̂i,C
p
i)

q̃i ∼ N (q̂i,C
q
i)

, (12)

where p̂ and q̂ are the mean value for the neighbourhood

points. So, the transformation error can be defined as:

di = p̃i −Tp̃i. (13)

The distribution of di can be calculated as:

di ∼ N (q̂i −Tp̂i, C
q
i +TC

p
i T

T)

= N (0, Cq
i +TC

p
i T

T)
(14)

The cost function for GICP is given in the Equation 15.

fGICP =
∑

1

dT
i (C

q
i +TC

p
i T

T)
−1

di (15)

This paper utilises GICP to improve robustness against noise

in a more realistic scenario.

The estimated pose from Equation 9 contains the position

and attitude of the robot:

Xk =

(
ρGICP,k

eGICP,k

)
(16)

The reduced observations for the measurement update of

the Kalman filter are computed from

δzGICP,k =

(
ρ̃IMU,k − ρGICP,k

ẽIMU,k − eGICP,k

)
, (17)

where ρ̃IMU,k is the predicted position and ẽIMU,k is the pre-

dicted attitude at epoch k. ρGICP,k is the computed position

from GICP and eGICP,k is the computed attitude from GICP

at epoch k.

The design matrix H for the measurement update with GICP

has the following form:

HGICP,k =

(
I3×3 03×3 03×3 03×3

03×3 03×3 I3×3 03×3

)
. (18)

HGICP,k is used in Equation 3 to compute the Kalman gain.

The measurement noise matrix RGICP,k is modelled as a

diagonal 6×6-matrix with the variances σ2
x = σ2

y = (1.4[m])2,

σ2
z = (10[m])2 for position and σ2

e = (0.032[rad])2 for the

Euler angles. The gain matrix and the reduced observations in

Equation 17 are then used to estimate the error state vector

with Equation 5.

Authorized licensed use limited to: Technische Universitaet Graz. Downloaded on December 15,2022 at 06:14:23 UTC from IEEE Xplore. Restrictions apply.

N

E

a

b

ψ

b

a

δfl

Fig. 3. Model of a 4WIS4WID robot. The wheel positions in the robot’s
body frame can be determined from the wheelbase (2a) and the trackwidth
(2b).

2) Odometry as Aiding Sensor: When odometry is used to

compute position changes or velocity of a robot, a suitable

kinematic model has to be found. The robot used in this

study is a four-wheel-independent steering and four-wheel-

independent driving (4WIS4WID) robot, which means that all

four wheels can be steered independently. We can measure

the individual steering angles δfl, δfr, δrl, δrr, as well as the

individual wheel speeds vfl, vfr, vrl, vrr, where the indices

indicate the position of the wheel in the body frame of the

robot: front left (fl), front right (fr), rear left (rl), and rear

right (rr).

We use a model proposed by [17] to compute the heading

rate (ψ̇) as well as the velocities (vN , vE) of the robot in a

North-East-Down frame:

vN,odo
vE,odo
ψ̇odo

 = J · vwheels, (19)

with

vwheels =
(
vfl vfr vrl vrr

)T
, (20)

and

J =

cos(δfl+ψ)
4

sin(δfl+ψ)
4

b cos(δfl)+a sin(δfl)
4a2+4b2

cos(δfr+ψ)
4

sin(δfr+ψ)
4

−b cos(δfr)+a sin(δfr)
4a2+4b2

cos(δrl+ψ)
4

sin(δrl+ψ)
4

b cos(δrl)−a sin(δrl)
4a2+4b2

cos(δrr+ψ)
4

sin(δrr+ψ)
4

−b cos(δrr)−a sin(δrr)
4a2+4b2

T

,

(21)

where a is half of the robot’s wheel base and b is half of the

robot’s trackwidth. a and b determine the coordinates of the

wheels in the robots body frame (see Figure 3): the front left

wheel has the coordinates (a,−b), the front right wheel (a, b),
the rear left wheel (−a,−b), and the rear right wheel (−a, b).

In the next step, the reduced observations for the Kalman

filter are computed from

δzodo,k =

ṽN,IMU,k − vN,odo,k
ṽE,IMU,k − vE,odo,k

ṽD,IMU,k − 0

−ψ̇odo · δt

 , (22)

where ṽN,IMU,k is the north-component of the predicted

velocity from the IMU data at epoch k and vN,odo,k is the

north-component of the velocity computed from odometry

with Equation 19 at epoch k. The subscripts E and D indicate

the east- and down-component of the velocity vector. Note

that no down-component of velocity can be computed from

odometry, so a zero is used as a pseudo-observation. The

fourth row of the reduced observations vector in Equation

22 only contains the negative integrated heading rate from

odometry (−ψ̇odo · δt) since this term already describes the

difference to the prediction.
The design matrix for the measurement update odometry

data has the following form:

Hodometry,k =

(
03×3 I3×3 03×3 03×3

01×3 01×3

(
0 0 1

)
01×3

)
. (23)

The design matrix Hodometry,k is then used in Equation 3

to compute the Kalman gain matrix. The measurement noise

matrix Rodometry,k is modelled as a 4 × 4 diagonal matrix,

where the first three elements contain the variances for speed

(σ2
v = (0.025[m/s])2) and the fourth element contains the

variance for the heading (σ2
ψ = (0.017[rad])2). The Kalman

gain matrix and the reduced observations from Equation 22

are then used in Equation 5 to estimate the error state vector.
3) IMU as Reference Navigation Sensor: When the IMU

is used as a reference navigation sensor to propagate the filter

state, the filter state is propagated using a strapdown algorithm.

For the formulation of the dynamic model and the linearised

transition matrix, see [18].
Whenever an IMU is used for navigation, it is crucial to

accurately detect the phases where the vehicle is not moving.

When wheel speeds are present from encoders, they can be

used to determine whether the vehicle is standing still or

moving. However, simply making sure that all wheel speeds

are zero is not sufficient. When the robot brakes, there is a

short period of time where the wheel speeds are zero but the

robot does not immediately come to a complete stop. This

braking motion can be seen in the IMU data, as an angular

rate about the vehicle’s cross-axis (see Figure 4). Therefore,

both the wheel speeds and the angular rate about the vehicle’s

cross-axis are combined and checked whether they are below

a threshold. If they are lower than a threshold, a static phase

is detected.

13:41:00 13:41:05 13:41:10
Time

0.2

0.0

0.2

A
ng

ul
ar

 V
el

oc
ity

 [r
ad

/s
]

Gyro Y
0.50

0.25

0.00

0.25

0.50

Sp
ee

d
[m

/s
]

Fig. 4. Angular velocity about the vehicle’s cross-axis measured by the IMU’s
gyro (blue) and mean wheel speed (orange) during a braking phase.

During static phases, the gyro bias is estimated. For online

bias estimation, a circular buffer is filled with the IMU’s

gyroscope measurements in static phases. As a MEMS IMU

is used in our study, we neglect the Earth’s rotation rate and

compute the gyro bias as a simple mean of the values in the

circular buffer.

Authorized licensed use limited to: Technische Universitaet Graz. Downloaded on December 15,2022 at 06:14:23 UTC from IEEE Xplore. Restrictions apply.

Note that no online accelerometer bias was estimated,

but values from a previous calibration were used. Since the

accelerometer bias is correlated with the velocity, the low

resolution of the velocity measured by the rotary encoders

leads to an erroneous estimation of the accelerometer biases

and would deteriorate the overall result.

C. Software Development

The software development was done in ROS (Robot Operat-

ing System). This allows for a flexible architecture in real-time

scenarios as well as in post-processing. As it is a node-based

framework, it allows for easy adaption of filter parameters and

quick iteration of software versions.

D. Field tests

The field tests for this study were conducted in July 2021

at Zentrum am Berg in Eisenerz, Austria. During these tests,

the robot equipped with the before mentioned sensors was

steered via remote control into the tunnel. A ground trouth was

obtained by tracking two Leica 360°-prisms that were mounted

on the robot with two robotic total stations. The mounting

points of the prisms can be seen in Figure 5.

Fig. 5. Picture of how reference trajectory was obtained. Photo by Disaster
Competence Network Austria (DCNA).

Figure 6 shows the trajectory of the robot during the tests

in blue. The start point of the trajectory is shown in red

and the walls of the tunnel are shown in black. The robot

drove curved path along the tunnel axis. The two total stations

were positioned at the tunnel entrance, close to the starting

point. After the robot drove approximately 140 metres into the

tunnel, the total stations lost the line-of-sight to the prisms.

Fig. 6. Trajectory of the robot during the field tests.

Figure 7 shows a time series of the average wheel speeds

obtained from the encoders. In the beginning, the speed is

negative, which means that the robot drove backwards for a

short time. Then, it drove forward with about 0.6 m/s and

stopped after 160 seconds before it accelerated to 0.8 m/s. In

total, it took the robot 240 seconds to travel 140 metres into

the tunnel.

0 50 100 150 200 250

Time [s]

0.00

0.25

0.50

0.75

S
p

ee
d

 [
m

/s
]

Fig. 7. Average of the four wheel speeds obtained from the rotary encoders
during the tests.

During the tests, the point cloud data from the LIDAR was

recorded with 10 Hz, wheel speeds and steering angles from

odometry were recorded with 60 Hz and accelerations and

angular rates from the IMU were recorded with 100 Hz.

For these first tests, the filter was initialised with the first

ground truth position recorded by the total stations. In the

future, it is planned that the robot is also equipped with a

GNSS receiver. It will then use the last valid GNSS position

before going into the tunnel as a filter estimate.

III. RESULTS

The following section presents the results of the field

tests. It will compare the GICP stand-alone solution and the

proposed EKF solution that supports GICP with IMU and

wheel odometry. To analyse the accuracy of both methods,

the estimated position as well as the heading is compared to

the ground truth.

Figure 8 shows the position error of GICP as a function of

the distance travelled into the tunnel. The 2D or horizontal

position error is depicted in blue, the 3D position error is

depicted in orange. It is clearly visible that the position error

grows with the distance traveled. The uniform structure of the

tunnel with few distinguishable features makes it difficult to

register the point clouds. The 2D error grows to 7.1 metres

after 140 metres of going into the tunnel, the 3D error is higher

than 10 metres.

Figure 9 shows the position error of the EKF that fuses

GICP, wheel odometry, and IMU data. Again, the 2D error

ist depicted in blue, while the 3D error is shown in orange.

As with the GICP standalone solution, the error grows with

traveled distance. This is to be expected, as both inertial

0 20 40 60 80 100 120 140
Distance [m]

0

250

500

750

1000

Po
si

tio
n

E
rr

or
 [c

m
]

2D
3D

Fig. 8. Position and heading error of GICP stand-alone solution. The x-axis
reflects distance traveled in metres.

Authorized licensed use limited to: Technische Universitaet Graz. Downloaded on December 15,2022 at 06:14:23 UTC from IEEE Xplore. Restrictions apply.

0 20 40 60 80 100 120 140
Distance [m]

0

100

200

Po
si

tio
n

E
rr

or
 [c

m
]

2D
3D

Fig. 9. Position and heading error of the EKF solution. The x-axis reflects
distance traveled in metres.

navigation with an IMU and wheel odometry are methods of

dead reckoning. All methods of dead reckoning only yield

position changes and therefore compute the new position by

adding the position change to the previous position. Errors

therefore accumulate and the position error grows with time or

distance traveled. However, when comparing the filter results

to the GICP standalone solution in Figure 8, it can be seen that

adding wheel odometry and IMU data significantly improves

the positioning error.

Table I shows the maximum errors of the GICP solution,

a solution using only odometry and the IMU, and the EKF

fusing all sensors. As the error grows with distance in all

solutions, the maximum position error corresponds to the

error that occurs at the end of the trajectory. While the

maximum 2D positioning error is 7.1 metres for the GICP

standalone solution, and 21.3 metres for the solution using

only odometry and the IMU, the EKF reduces the error to only

1.5 metres. This is because the GICP solution mainly drifts in

the along-track component, while the combined odometry &

IMU solution drifts in the cross-track component. Through

a closed-loop EKF, both the along- and cross-track errors

are minimized. The maximum 3D error of 10.7 metres for

GICP standalone, or 21.4 metres for the combined odometry

and IMU solution, is reduced to 2.4 metres by the EKF.

The maximum heading error is biggest for the solution using

only odometry and the IMU. Adding LIDAR data therefore

improves the heading estimation.

TABLE I
MAXIMUM ERROR FOR FILTER RESULTS

GICP Odometry & IMU EKF

Max. Position Error 2D [m] 7.1 21.3 1.5

Max. Position Error 3D [m] 10.7 21.4 2.4

Max. Heading Error [°] 7.6 19.1 8.1

Table II shows the mean position and heading errors as well

as their standard deviations for the GICP standalone solution,

the combined odometry and IMU solution, and the EKF fusing

information from all available sensors. It can be seen that

combining all sensors with an EKF also leads to a lower mean

error and a lower standard deviation of the error.

IV. DISCUSSION

The aim of this paper was to develop an algorithm to

estimate position and attitude of a wheeled robot that can

TABLE II
MEAN AND STANDARD DEVIATION FOR FILTER RESULTS

GICP Odometry & IMU EKF

Position Error 2D

µ± σ [m]
3.0± 1.9 6.7± 6.2 0.6± 0.3

Position Error 3D

µ± σ [m]
3.7± 2.8 6.7± 6.3 1.1± 0.6

Heading Error

µ± σ [°]
−0.3± 1.1 −8.8± 5.3 −0.4± 1.2

be used in emergency situations such as tunnel fires. This

environment is particularly challenging for navigation as we

cannot rely on GNSS, nor on any other infrastructure-based

positioning methods.

The navigation sensors used in this study were a laser

scanner by Velodyne (Puck VLP-16), an IMU by XSens (MTi-

G-710), as well as the rotary encoders and linear actuators of

the robot’s wheels.

An Extended Kalman Filter is used to fuse information

from all sensors and estimate the position and attitude of the

robot. Wheel odometry and the laser scanner are used in the

measurement update of the filter, and the IMU is used as

a reference navigation sensor to propagate the filter state in

the time update. A cascaded filter architecture is used, which

means that the measurements of wheel odometry and the laser

scanner are pre-processed before they are inserted into the

filter. For wheel odometry, a 4WIS4WID-model is used to

compute velocity and heading change; the point clouds of the

laser scanner are registered using GICP.

The developed algorithm was tested at Zentrum am Berg, a

tunnel research facility in Eisenerz, Austria. Two total stations

were used to track the robot and obtain a ground truth. To

analyse the achievable accuracy for position and heading, the

results of the filter were compared to the ground truth.

They show that when only GICP with the point cloud

recorded by the laser scanner is used to estimate the pose of

the robot, the error accumulates quickly. After 140 metres of

going into the tunnel, the 3D positioning error is bigger than

10 metres and the horizontal positioning error is 7.1 metres.

When an IMU and odometry information are used in an

EKF to support the GICP estimate, the position error is

reduced significantly. The 3D positioning error after 140

metres in the tunnel is reduced to 2.4 metres and the horizontal

positioning error is reduced to 1.5 metres, which corresponds

to an error of only 1.07% of the traveled distance.

In the future, the enhanced position estimate of the EKF

will be fed back to the GICP as an initial guess to speed up

registration and create a more accurate site map. Furthermore,

the position estimate will be used to georeference detected

hazardous substances.

This rapidly created site map using only onboard sensors

of the robot and no external infrastructure should support

emergency task forces in tunnel accidents. It should help

to reduce uncertainties and enhance safety for emergency

personnel.

Authorized licensed use limited to: Technische Universitaet Graz. Downloaded on December 15,2022 at 06:14:23 UTC from IEEE Xplore. Restrictions apply.

ACKNOWLEDGMENT

This research was funded by the Austrian Federal Ministry

for Agriculture, Regions and Tourism via the Österreichische

Forschungsförderungsgesellschaft (Austrian Research Promo-

tion Agency) (879693). The authors would like to thank the

project partners at Montanuniversität Leoben - Subsurface

Engineering, Disaster Competence Network Austria, Austrian

Institute of Technology – Digital Safety and Security, JOAN-

NEUM RESEARCH Forschungsgesellschaft mbH – Digital,

Riegl Research Forschungsgesellschaft mbH, IQSoft GmbH

(IQSOFT), CBRN Protection GmbH, E-NETIC, the Austrian

Federal Ministry of Defence – Armed Forces, and the profes-

sional firebrigades of Graz, Linz, and Innsbruck.

REFERENCES

[1] Ove Njå and Mona Svela. “A review of competencies

in tunnel fire response seen from the first respon-

ders’ perspectives”. In: Fire Safety Journal 97 (2018),

pp. 137–145. ISSN: 03797112. DOI: 10.1016/j.firesaf.

2017.05.005.

[2] Timothy Chung. DARPA Subterranean (SubT) Chal-

lenge. URL: https : / / www. darpa . mil / program / darpa -

subterranean-challenge (visited on 02/22/2022).

[3] Paul D. Groves. Principles of GNSS, inertial, and

multisensor integrated navigation systems. second edi-

tion. Artech House GNSS library. Boston and London:

Artech House, 2013. ISBN: 1608070050.

[4] Alberico Sonnessa et al. “Indoor Positioning Methods

– A Short Review and First Tests Using a Robotic

Platform for Tunnel Monitoring”. In: Computational

Science and Its Applications – ICCSA 2020. Ed. by Os-

valdo Gervasi et al. Cham: Springer International Pub-

lishing, 2020, pp. 664–679. ISBN: 978-3-030-58811-3.

[5] Shibo Zhao et al. “Super Odometry: IMU-centric

LiDAR-Visual-Inertial Estimator for Challenging En-

vironments”. In: 2021 IEEE/RSJ International Confer-

ence on Intelligent Robots and Systems (IROS). 2021,

pp. 8729–8736. DOI: 10 . 1109 / IROS51168 . 2021 .

9635862.

[6] Ji Zhang and Sanjiv Singh. “LOAM: Lidar Odometry

and Mapping in Real-time.” In: Robotics: Science and

Systems. Vol. 2. 9. Berkeley, CA. 2014, pp. 1–9.

[7] Tixiao Shan et al. “LIO-SAM: Tightly-coupled Li-

dar Inertial Odometry via Smoothing and Mapping”.

In: IEEE/RSJ International Conference on Intelligent

Robots and Systems (IROS). IEEE. 2020, pp. 5135–

5142.

[8] Tong Qin, Peiliang Li, and Shaojie Shen. “VINS-Mono:

A Robust and Versatile Monocular Visual-Inertial State

Estimator”. In: IEEE Transactions on Robotics 34.4

(2018), pp. 1004–1020. DOI: 10 . 1109 / TRO . 2018 .

2853729.

[9] Konstantinos Loupos et al. “Autonomous robotic sys-

tem for tunnel structural inspection and assessment”.

In: International Journal of Intelligent Robotics and

Applications 2.1 (2018), pp. 43–66. ISSN: 2366-5971.

DOI: 10.1007/s41315-017-0031-9.

[10] Elisabeth Menendez et al. “Tunnel structural inspection

and assessment using an autonomous robotic system”.

In: Automation in Construction 87 (2018), pp. 117–126.

ISSN: 09265805. DOI: 10.1016/j.autcon.2017.12.001.

[11] Richard Halatschek et al. “Universal Offroad Robot

Platform for Disaster Response”. In: 2020 IEEE In-

ternational Symposium on Safety, Security, and Rescue

Robotics. Vol. 2020 IEEE International Symposium on

Safety, Security, and Rescue Robotics. 2020.

[12] Bernhard Hofmann-Wellenhof, Klaus Legat, and Man-

fred Wieser. Navigation. Vienna: Springer Vienna,

2003. ISBN: 978-3-211-00828-7. DOI: 10 . 1007 / 978 -

3-7091-6078-7.

[13] P. J. Besl and Neil D. McKay. “A method for reg-

istration of 3-D shapes”. In: IEEE Transactions on

Pattern Analysis and Machine Intelligence 14.2 (1992),

pp. 239–256. DOI: 10.1109/34.121791.

[14] Sam Marden and Jose Guivant. “Improving the Perfor-

mance of ICP for Real-Time Applications using an Ap-

proximate Nearest Neighbour Search”. In: Australasian

Conference on Robotics and Automation (2012).

[15] Kok-Lim Low. “Linear least-squares optimization for

point-to-plane icp surface registration”. In: Chapel Hill,

University of North Carolina 4.10 (2004), pp. 1–3.

[16] Aleksandr Segal, Dirk Haehnel, and Sebastian Thrun.

“Generalized-ICP”. In: Robotics: Science and Systems

V. Robotics: Science and Systems Foundation, 2009.

ISBN: 9780262514637. DOI: 10.15607/RSS.2009.V.021.

[17] Ming–Han Lee and Tzuu–Hseng S. Li. “Kinematics,

dynamics and control design of 4WIS4WID mobile

robots”. In: The Journal of Engineering 2015.1 (2015),

pp. 6–16. ISSN: 2051-3305. DOI: 10 .1049 / joe .2014 .

0241.

[18] Aboelmagd Noureldin, Tashfeen B. Karamat, and

Jacques Georgy. Fundamentals of Inertial Navigation,

Satellite-based Positioning and their Integration. Berlin,

Heidelberg: Springer Berlin Heidelberg, 2013. ISBN:

978-3-642-30465-1. DOI: 10.1007/978-3-642-30466-8.

Authorized licensed use limited to: Technische Universitaet Graz. Downloaded on December 15,2022 at 06:14:23 UTC from IEEE Xplore. Restrictions apply.

